Vida em fadiga termomecânica de matrizes de forjamento - parte 1

por DIEGO RAFAEL ALBA, THOMAS G. DOS SANTOS, LÍRIO SCHAEFFER

O valor de um produto forjado é calculado por seus custos de manufatura e engloba os mais diversos aspectos. Uma grande percentagem é devido ao custo de retrabalho das matrizes de forjamento. Entenda quais os métodos de avaliação disponíveis e quais foram os avanços feitos nas últimas décadas relacionados a predição da vida em fadiga de matrizes de forjamento.

atrizes¹ para operações de forjamento a quente estão sujeitas a esforços cíclicos mecânicos e térmicos, os quais influenciam diretamente no comportamento em fadiga do ferramental². O início e a propagação de trincas na superfície da matriz são induzidos simultaneamente pelos gradientes térmicos que atuam na camada próxima a superfície de contato matriz/ geratriz e também pelas altas tensões devido aos carregamentos mecânicos. Embora avanços tenham sido alcançados neste tema, atualmente a vida em fadiga de matrizes ainda é difícil de ser estimada através de experimentos, ou através de simulações numéricas [1, 2].

Em processos de forjamento a quente são impostas às matrizes altas tensões durante o período de forjamento, bem como no período de extração do componente forjado quando as matrizes são resfriadas através do uso de lubrificantes. As superfícies das matrizes e as camadas logo abaixo são submetidas a ciclos mecânicos e térmicos os quais são caracterizados por altas amplitudes e altas frequências [1, 3].

Por estas razões, conforme mostrado na figura 1, diferentes mecanismos de falha prevalecem: desgaste, deformação plástica e trincas devido à fadiga termomecânica [2, 4]. Diferentemente do desgaste e da deformação plástica, onde o dano acontece gradualmente durante o serviço e afeta o acabamento do produto final, as trincas devido à fadiga podem surgir, mas seu efeito no componente forjado não é evidente [3]. Desta forma, a falha por fadiga é repentina, pois o tempo entre a trinca atingir seu tamanho crítico e propagar instavelmente é curto [1].

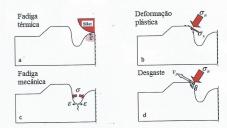


Figura 1 - Mecanismos de falha de matrizes para forjamento a quente. (a) Fadiga térmica; (b) deformação plástica; (c) fadiga mecânica e (d) desgaste [3]

Nestes casos, a produção é interrompida e as matrizes defeituosas devem ser substituídas, o que leva ao aumento de custos e atraso na produção. Portanto, o tempo de vida de matrizes é uma consideração importante do ponto de vista de redução de custos associados a substituição de ferramentas, aumento de produ-

tividade e qualidade do produto final.

Trincas devido a fadiga, como mostrado na figura 2, são geralmente vistas como uma cadeia de pequenas trincas na superfície da ferramenta, e este é um importante mecanismo limitador da vida do ferramental [1, 5, 6]. As propriedades do material e a complexa interação com o estado cíclico dos carregamentos térmicos e mecânicos oriundos do processo determinam o comportamento do material durante os ciclos de forjamento [7, 8].

Figura 2 - Trincas devido a fadiga formadas na superfície de uma matriz de forjamento a quente após (a) 500 forjamentos, (b) 1.850 forjamentos, (c) 4.300 forjamentos e (d) 6.900 forjamentos [8]

FADIGA MECÂNICA

A falha por fadiga é uma das principais formas de falha de componentes na indústria do forjamento. De maneira oposta as falhas por desgaste e deformação plástica, a fadiga mecânica não leva a produtos fora da especificação, mas pode levar a pequenas falhas de acabamento e também ao descarte das matrizes. Fadiga mecânica é um dano progressivo e localizado que ocorre quando o material é submetido a carregamento cíclico[9].

Até mesmo tensões abaixo do limite de escoamento do material podem levar a falha devido a fadiga. Após o instante em que as matrizes estão completamente preenchidas com o material a ser forjado, as tensões na superfície da ferramenta tendem a crescer significantemente. Este tipo de falha é mais comum na última etapa de forjamento onde a geratriz já foi conformada na sua pré-forma e está próxima da sua geometria final [3]. Nesta última etapa, as matrizes são preenchidas mais rapidamente para que o produto satisfaca os requisitos dimensionais e de tolerância. Isto cria regiões onde a tensão na ferramenta é muito grande o que pode levar a iniciação de trincas após apenas alguns ciclos de forjamento [3].

Geralmente, as trincas por fadiga se iniciam e propagam em regiões onde as deformações são mais severas. Os mecanismos de fadiga compreendem as seguintes fases sucessivas: nucleação ou iniciação da trinca (estágio I), propagação (estágio II), e ruptura final (estágio III) [9, 10]. As trincas normalmente iniciam na superfície do componente, visto que nessa região que ocorre as maiores tensões [3]. O campo de tensões na superfície é determinado por uma série de fatores, como por exemplo, a magnitude do carregamento, imperfeições metalúrgicas e de superfície as quais podem ser concentradores de tensão macroscópicos. De maneira similar, o material é composto por descontinuidades, anisotropia e não homogeneidades. Imperfeições na superfície, como entalhes, arranhões, riscos e falhas de fabricação são os locais mais óbvios para a nucleação de trincas. Descontinuidades superficiais e sub superficiais em zonas críticas também podem ser sítios de nucleação. Inclusões de outros materiais, precipitados frágeis, e descontinuidades no arranjo cristalino, como fronteiras de grão e fronteiras duplas, são exemplos de concentradores de tensão microscópicos na matriz do material [10, 11].

Embora a nucleação de trincas geralmente ocorra em entalhes ou em outras descontinuidades, até mesmo em superfície sem defeitos as trincas podem ocorrer. A formação de bandas de deslizamento é inerente a superfície dos materiais e pode levar a nucleação

[3, 10]. Elas são o resultado do acumulo sistemático de pequenos deslizamentos na ordem de 1 nm. O movimento destas bandas leva a formação de intrusões e extrusões na superfície, levando a formação de trincas, conforme figura 3 [10].

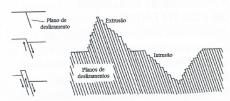
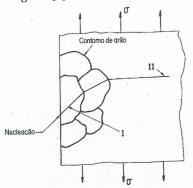



Figura 3 - Desenvolvimento de intrusões e extrusões durante a nucleação de trincas de fadiga [10]

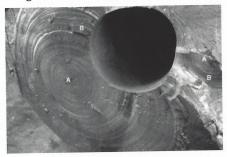

O primeiro estágio consiste na nucleação de uma trinca e posterior crescimento a 45° em relação a direção de solicitação conforme mostrado na figura 4. O crescimento nesta direção que corresponde a propagação em planos sujeitos a grandes tensões de cisalhamento [4, 11]. Quando o tamanho da trinca é suficiente para que o estado de tensões na ponta da trinca torne-se dominante, a trinca começa a propagar perpendicularmente a direção da tensão principal, passando então, ao estágio II [9].

Figura 4 - Estágios de nucleação e crescimento de trinca[9].

Como previamente dito, o estágio II ocorre quando a trinca modifica sua direção e propaga no plano normal a direção do carregamento. Portanto, este comportamento é governado pelo valor da tensão normal e o crescimento neste estágio ocorre de forma ordenada. A velocidade de propagação do estágio II é dependente do fator de intensidade

de tensões e possui uma característica única chamada marcas de praia [4, 10]. Provavelmente, marcas de praia são um dos maiores indicativos de falha devido a fadiga. Elas indicam o ponto onde a trinca se iniciou e podem ocorrer devido as variações de carregamento durante a ciclagem ou à oxidação³ da superfície da fratura durante períodos em que a trinca não se propaga quando o componente não está sob solicitação alguma [10, 12]. A figura 5 mostra a falha por fadiga ocorrida em um martelo de queda. Os pontos A mostram o ponto de nucleação da trinca e os pontos B mostram as marcas de praia devido a fadiga cíclica [13].

Figura 5 - Detalhes da fratura de um martelo de queda [13]

O estágio III ocorre quando a trinca atinge seu valor crítico, o que acarreta na ruptura final do componente. Neste estágio, a seção útil remanescente não é suficiente para suportar os carregamentos impostos. A trinca propaga-se instavelmente o que leva a ruptura repentina [9].

'Matriz: ferramental construído para conformar um material de seu estado inicial (bruto) para um estado final (acabado), de ciclo intermitente, que resulta em um componente/peça/produto, único ou que compõe partes de outro produto.

²Ferramental: É a gama de moldes, matrizes, estampos e dispositivos que tem o objetivo de conformar um material de seu estado inicial (bruto) para um estado final (acabado), que resulta em um componente/peça/produto, único ou que compõe partes de outro produto.

³Oxidação: antigamente, o termo oxidação significava combinar-se com o oxigênio. Quando se adquiriu o conhecimento da estrutura dos átomos verificou-se que, quando um elemento ou uma substância combinava-se com o oxigênio, perdia elétrons. Atualmente, o termo significa perder elétrons, não necessariamente em presença de oxigênio [⁹].

TECNOLOGIA

> FADIGA TÉRMICA

Fadiga térmica consiste em trincas na superfície do material devido a tensões cíclicas térmicas. Matrizes para forjamento experimentam altas taxas de aquecimento na sua superfície e repentino resfriamento devido aos processos de lubrificação pós-etapa de forjamento [3]. Devido à pequena camada aquecida e resfriada e às diferentes temperaturas nas redondezas, este processo cria tensões compressivas e trativas as quais podem atingir valores acima da tensão de escoamento do material podendo nuclear trincas na superfície após alguns ciclos de forjamento [5, 14]. Normalmente, este tipo de falha ocorre em pontos onde o tempo de contato entre matriz e geratriz é suficientemente grande. Este tempo de contato longo causa um grande gradiente de temperaturas na superfície da ferramenta criando deformações [3, 6].

Trincas devido a fadiga térmica são resultado de rápidas alterações na temperatura da superfície da ferramenta. Os ciclos de temperatura podem induzir tensões altas o suficiente para impor um incremento de deformação plástica na superfície da ferramenta [4, 15]. Trincas na superfície se desenvolvem geralmente em poucos milhares de ciclos, ou até mesmo antes, e consequentemente, este tipo de falha está no campo da fadiga de baixo ciclo (10³ a 10⁴ ciclos) [2, 3, 6]. Oxidação e fluência do material contribuem significamente para o início de tais trincas. O mecanismo de fadiga térmica é geralmente observado como uma rede de pequenas trincas na superfície da matriz, e tais trincas em algumas ocasiões somente penetram até certo limite da camada superficial. Esta rede de trincas degrada a qualidade da superfície da ferramenta e, consequentemente, o acabamento superficial dos produtos [1, 8]. Isto pode, em última instância, aumentar o custo de produção devido à cara manutenção, falhas catastróficas das matrizes, e retrabalho dos produtos forjados. Altos níveis de resistência ao escoamento em altas temperaturas, alta dureza, baixa temperabilidade, resistência a fluência e ductilidade, são algumas das propriedades necessárias do material para que se evite a fadiga térmica. Aços

ferramentas de trabalho a quente, como por exemplo, AISI H11, H13, H20, H21 ou H22, se apresentam como ótimos candidatos para a utilização em ferramentas de forjamento a quente [16-18].

> MÉTODOS DE AVALIAÇÃO DA VIDA EM FADIGA

Atualmente diferentes métodos de avaliação estão disponíveis para prever o comportamento em fadiga de matrizes de forjamento. Entretanto, fadiga é um processo empírico⁴/cientifico muito dificil de prever com exatidão. Entre estes métodos salientamos os que seguem.

Determinístico/Empírico

O método determinístico é baseado em observações realizadas durante o processo. Por exemplo, se um par de matrizes forjou 1.500 componentes até a ser observada a nucleação de trincas devido a fadiga, supõe-se que o próximo par terá uma vida útil de aproximadamente 1.500 ciclos também. Ele é considerado determinístico, pois baseia-se no que já foi observado, mas sem o equacionamento matemático para uma melhor compreensão do processo [3].

Este tipo de análise é geralmente utilizado para pontos e parâmetros específicos. Por exemplo, este método permitiu consolidar o conhecimento para o aumento da vida útil de matrizes evitando raios de transição pequenos em locais de grande esforço mecânico.

Estatístico

O método estatístico é similar ao método determinístico, porém baseia-se em um enfoque mais matemático acerca da predição da vida útil de componentes. Através de uma determinada população, que tende sempre a aumentar, analisa-se a confiabilidade do ferramental. Consideram-se os dados relacionados ao ferramental, usualmente número de ciclos até falha, e ajustam-se estes dados a uma distribuição estatística. Desta forma, obtêm-se a distribuição de dados relacionados às amostras avaliadas. Então, estes são relacionados a fim de atingir uma taxa de sucesso aceitável. A medida estatística da probabilidade de que um componente mecânico não falhe é denominada confiabilidade (R) e está diretamente relacionada à probabilidade de falha (pf) [12].

A probabilidade de falha pfé obtida através de uma função de densidade de probabilidade, a qual representa a distribuição de eventos para um determinado intervalo. As distribuições mais comuns em problemas de engenharia são a distribuição gaussiana, ou normal, e a distribuição de Weibull [12].

Teórico/Mecânico

O método teórico é o único método o qual pode descrever a vida das matrizes antes mesmo de sua fabricação. Este método consiste em avaliar o processo, por exemplo, através de análise em elementos finitos⁵ e análise mecânica de possíveis zonas de falha para definir pontos concentradores de tensão e definir o comportamento em fadiga do material. Na última década, muitos esforços têm sido desprendidos para modelar a propagação de trincas através de métodos de elementos finitos [3, 4, 19].

Dentre os métodos teóricos/mecânicos três abordagens fundamentais são utilizadas para projeto e análise de fadiga em componentes metálicos. Estes métodos são denominados método da vida sob tensão, método da vida sob deformação e método da mecânica da fratura linear elástica (LEFM) [2, 12]. As premissas de projeto de cada uma das abordagens são diferentes, mas se complementam para uma melhor predição de vida em fadiga. Todas abordagens tentam prever o número de ciclos até a falha, N, para um especifico carregamento. Vida entre 1< N < 10³ ciclos é considerada fadiga de baixo ciclo (Lowcycle fatigue – LCF) enquanto que a fadiga é alto ciclo (High cycle fatigue – HCF) é considerada quando N >10³ ciclos [2, 4, 9, 12].

⁴Empírico: É o conhecimento que se adquire no decorrer do dia, por meio de tentativa e erro.

Felementos finitos: É uma forma de resolução numérica de um sistema de equações diferenciais parciais. É uma análise matemática que consiste na discretização de um meio contínuo em pequenos elementos, mantendo as mesmas propriedades do meio original.

TECNOLOGIA

REFERÊNCIAS BIBLIOGRÁFICAS

1. Berti, G. A. and M. Monti; Thermo-mechanical fatigue life assessment of hot forging die steel. Fatigue & Fracture of Engineering Materials & Structures, 2005. 28(11): p. 1025-1034. 2. Chen, C., et al.; A review on remanufacture of dies and moulds. Journal of Cleaner Production, 2014. 64: p. 13-23.

3. Santaella, M. L.; Thermo-mechanical fatigue of hot forging tools - prediction, analysis and optimization methods through six-sigma, in Faculty of Georesources and Materials Engineering. 2012, RWTH Aachen University: Alemanha. p. 200.

 Grobaski, T. C.; Preliminary research for the develpment of a hot forging die life prediction, in Mechanical Engineering. 2004, Ohio University: EUA. p. 119.

5. Chander, S. and V. Chawla; Failure of Hot Forging Dies-An Updated Perspective. Materials Today: Proceedings, 2017. 4(2): p. 1147-1157.

6. Lavtar, L., et al.; Analysis of the main types of damage on a pair of industrial dies for hot forging car steering mechanisms. Engineering Failure Analysis, 2011. 18(4): p. 1143-1152. 7. Velay, V., et al.; Thermal fatigue of a tool steel: Experiment And Numerical Simulation. in 6th International Tooling Conference. Karlstad University, Sweden. 2002.

8. Gronostajski, Z., et al.; The failure mechanisms of hot forging dies. Materials Science and Engineering: A, 2016. 657: p. 147-160.

9. Branco, C. M., A. A. Fernandes, and P. M. S. T. Castro; Fadiga de estruturas soldadas. 1986: Fundação Calouste Gulbenkian. 10. Campbell, F. C.; Fatigue and Fracture: Understanding the Basics. 2012: ASM International.

11. Lampman, S. R. et al.; ASM Handbook: Fatigue and fracture. 1996: ASM International.

12. Nisbett, K. and R. Budynas; Shigley's Mechanical Engineering Design. 10th ed. ed. 2014, EUA: McGraw-Hill Education. 1105.

13. Irisarri, A., A. Pelayo; Failure analysis of an open die forging drop hammer. Engineering Failure Analysis, 2009. 16(5): D. 1727-1733.

14. Persson, A., S. Hogmark, and J. Bergström; Simulation and

evaluation of thermal fatigue cracking of hot work tool steels. International Journal of Fatigue, 2004. 26(10): p. 1095-1107. 15. Jhavar, S., C. Paul, and N. Jain; Causes of failure and repairing options for dies and molds: A review. Engineering Failure Analysis, 2013. 34: p. 519-535.

16. Berti, G. A. and M. Monti; Improvement of life prediction in AISI H11 tool steel by integration of thermo-mechanical fatigue and creep damage models. Fatigue & Fracture of Engineering Materials & Structures, 2009. 32(3): p. 270-283.

17. Persson, A.; Strain-based approach to crack growth and thermal fatigue life of hot work tool steels. Scandinavian Journal of Metallurgy, 2004. 33(1): p. 53-64.

18. Ebara, R.; Fatigue crack initiation and propagation behavior of forging die steels. International Journal of Fatigue, 2010. 32(5): p. 830-840.

19. Behrens, A., et al.; Numerical analysis of tool failure in hot forging processes. Obróbka Plastyczna Metali, 2008. 19: p. 11-17.

Autor principal Diego Rafael Alba - Graduação em Engenharia Mecânica e Mestrado em Engenharia de Materiais, Minas e Metalúrgica pela UFRGS (Universidade Federal do Rio Grande do Sul). Atualmente aluno de doutorado do Programa de Pós Graduação em Engenharia de Minas, Metalúrgica e Materiais (PPGE3M) da UFRGS. Pesquisas relacionadas aos processos de conformação mecânica e análises numérica dos processos através do método dos elementos finitos. Experiência na área de Engenharia de Materiais e Metalúrgica, com ênfase em Propriedades Mecânicas dos Metais e suas ligas, atuando principalmente nas áreas de conformação dos metais, soldagem em estado sólido, fadiga e análise de falha. Experiência na área de Engenharia Mecânica, com ênfase em projeto de componentes e equipamentos para indústria rodoviária e de Óleo & Gás. eng.diego. alba@gmail.com

Co-autor Thomas Gomes dos Santos - Possui graduação em Fabricação Mecânica pela Universidade Federal de Santa Maria (2015). Tem experiência na área de Engenharia Mecânica, com ênfase em Processos de Fabricação, atuando principalmente nos seguintes temas: usinagem, forjamento, extensômetros e análises numéricas. thomas.santos@ufrgs.br

Co-autor Lirio Schaeffer - Coordenador do Laboratório de Transformação Mecânica (LdTM) da UFRGS. Engenheiro Mecânico pela UFRGS, com doutorado na área de Conformação pela Universidade Técnica de Aachen (RWTH-Aachen). Pesquisador na área de Mecânica, Metalurgia e Materiais pelo CNPq, professor das disciplinas relacionadas aos processos de fabricação por conformação mecânica da UFRGS e vinculado ao Programa de Pós Graduação em Engenharia de Minas, Metalúrgica e Materiais (PPGE3M) desta universidade. Autor de diversos livros relacionados ao tema de Conformação Mecânica. schaefer@ufrgs.br

HÁ 38 ANOS, MOLDAMOS TENDÊNCIAS E GARANTIMOS QUALIDADE EM NOSSOS PROJETOS. É ASSIM QUE AS GRANDES IDEIAS GANHAM FORMA.

